Mutually Disjoint Steiner Systems $S(5, 8, 24)$ and $5$-$(24,12,48)$ Designs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutually Disjoint Steiner Systems S(5, 8, 24) and 5-(24,12,48) Designs

We demonstrate that there are at least 50 mutually disjoint Steiner systems S(5, 8, 24) and there are at least 35 mutually disjoint 5-(24, 12, 48) designs. The latter result provides the existence of a simple 5-(24, 12, 6m) design for m = 24, 32, 40, 48, 56, 64, 72, 80, 112, 120, 128, 136, 144, 152, 160, 168, 200, 208, 216, 224, 232, 240, 248 and 256.

متن کامل

on the number of mutually disjoint cyclic designs

we denote by $ls[n](t,k,v)$ a large set of $t$-$(v,k,lambda)$ designs of size $n$, which is a partition of all  $k$-subsets ofa $v$-set into $n$ disjoint  $t$-$(v,k,lambda)$ designs and$n={v-t choose k-t}/lambda$.   we use the notation$n(t,v,k,lambda)$ as the maximum possible number of mutuallydisjoint cyclic $t$-$(v,k,lambda)$designs. in this paper we givesome new bounds for $n(2,29,4,3)$ and ...

متن کامل

Some rigid Steiner 5-designs

Hitherto, all known non-trivial Steiner systems S(5, k, v) have, as a group of automorphisms, either PSL(2, v − 1) or PGL(2, v−2 2 ) × C2. In this paper, systems S(5, 6, 72), S(5, 6, 84) and S(5, 6, 108) are constructed that have only the trivial automorphism group.

متن کامل

On the Number of Mutually Disjoint Cyclic Designs

We denote by LS[N ](t, k, v) a large set of t-(v, k, λ) designs of size N , which is a partition of all k-subsets of a v-set into N disjoint t-(v, k, λ) designs and N = ( v−t k−t ) /λ. We use the notation N(t, v, k, λ) as the maximum possible number of mutually disjoint cyclic t-(v, k, λ)designs. In this paper we give some new bounds for N(2, 29, 4, 3) and N(2, 31, 4, 2). Consequently we presen...

متن کامل

Constructions of Disjoint Steiner Triple Systems

Let D*(v) denote the maximum number of pairwise disjoint and isomorphic Steiner triple systems of order v. The main result of this paper is a lower bound for D*(v), namely D*(6r+3)^ 4t—1 or 4/+1 according as 2/+1 is or is not divisible by 3, and D*(6f+l)^?/2 or t according as t is even or odd. Some other related problems are studied or proposed for study.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2010

ISSN: 1077-8926

DOI: 10.37236/450